Control of metallation and active cofactor assembly in the class Ia and Ib ribonucleotide reductases: diiron or dimanganese?

نویسندگان

  • JoAnne Stubbe
  • Joseph A Cotruvo
چکیده

Ribonucleotide reductases (RNRs) convert nucleotides to deoxynucleotides in all organisms. Activity of the class Ia and Ib RNRs requires a stable tyrosyl radical (Yⁱ), which can be generated by the reaction of O2 with a diferrous cluster on the β subunit to form active diferric-Yⁱ cofactor. Recent experiments have demonstrated, however, that in vivo the class Ib RNR contains an active dimanganese(III)-Yⁱ cofactor. The similar metal binding sites of the class Ia and Ib RNRs, their ability to bind both MnII and FeII, and the activity of the class Ib RNR with both diferric-Yⁱ and dimanganese(III)-Y cofactors raise the intriguing question of how the cell prevents mismetallation of these essential enzymes. The presence of the class Ib RNR in numerous pathogenic bacteria also highlights the importance of manganese for these organisms' growth and virulence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The dimanganese(II) site of Bacillus subtilis class Ib ribonucleotide reductase.

Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mn(III)(2)-Y(•), in their homodimeric NrdF (β2) subunit to initiate reduction of ribonucleotides to deoxyribonucleotides. The structure of the Mn(II)(2) form of NrdF is an important component in understanding O(2)-mediated formation of the active metallocofactor, a subject of much interest because a unique fla...

متن کامل

Metallation and mismetallation of iron and manganese proteins in vitro and in vivo: the class I ribonucleotide reductases as a case study.

How cells ensure correct metallation of a given protein and whether a degree of promiscuity in metal binding has evolved are largely unanswered questions. In a classic case, iron- and manganese-dependent superoxide dismutases (SODs) catalyze the disproportionation of superoxide using highly similar protein scaffolds and nearly identical active sites. However, most of these enzymes are active wi...

متن کامل

Mechanism of assembly of the dimanganese-tyrosyl radical cofactor of class Ib ribonucleotide reductase: enzymatic generation of superoxide is required for tyrosine oxidation via a Mn(III)Mn(IV) intermediate.

Ribonucleotide reductases (RNRs) utilize radical chemistry to reduce nucleotides to deoxynucleotides in all organisms. In the class Ia and Ib RNRs, this reaction requires a stable tyrosyl radical (Y(•)) generated by oxidation of a reduced dinuclear metal cluster. The Fe(III)2-Y(•) cofactor in the NrdB subunit of the class Ia RNRs can be generated by self-assembly from Fe(II)2-NrdB, O2, and a re...

متن کامل

A dityrosyl-diiron radical cofactor center is essential for human ribonucleotide reductases.

Ribonucleotide reductase catalyzes the reduction of ribonucleotides to deoxyribonucleotides for DNA biosynthesis. A tyrosine residue in the small subunit of class I ribonucleotide reductase harbors a stable radical, which plays a central role in the catalysis process. We have discovered that an additional tyrosine residue, conserved in human small subunits hRRM2 and p53R2, is required for the r...

متن کامل

Escherichia coli class Ib ribonucleotide reductase contains a dimanganese(III)-tyrosyl radical cofactor in vivo.

Escherichia coli class Ib ribonucleotide reductase (RNR) converts nucleoside 5'-diphosphates to deoxynucleoside 5'-diphosphates in iron-limited and oxidative stress conditions. We have recently demonstrated in vitro that this RNR is active with both diferric-tyrosyl radical (Fe(III)(2)-Y(•)) and dimanganese(III)-Y(•) (Mn(III)(2)-Y(•)) cofactors in the β2 subunit, NrdF [Cotruvo, J. A., Jr., and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current opinion in chemical biology

دوره 15 2  شماره 

صفحات  -

تاریخ انتشار 2011